Flexible sweat patch provides electrochemical, colorimetric, and volumetric readouts

January 22, 2019 // By Julien Happich
A team of international researchers led by the Northwestern University of Illinois has developed a thin and flexible wearable patch that integrates modularly a chronometric microfluidics platform with embedded colorimetric assays together with a re-usable readout electronics layer.

Inspired by biofuel cell designs, the patch operates battery-free, with a clever microfluidic channel design that leverages sweat pressure to reach different reagents and electrochemical sensors in a mode where target analytes spontaneously generate electrical signals proportional to their concentration. Described in a paper titled "Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat" published in Science Advances, the soft disposable microfluidic network was built from a silicone elastomer.


The disposable flexible microfluidic module integrating
colorimetric sensors and biofuel cell-based sensors.
Credit: J. Rogers, Northwestern University.

Using soft lithographic techniques, the authors created isolated chambers for colorimetric and electrochemical sensing, a ratcheted channel for quantifying sweat rate and total sweat loss and a collection of interconnecting microchannels with passive, capillary bursting valves (CBVs) for routing sweat through the device. For easy re-use, the electronics readout part, which consists of a thin NFC electronic module, magnetically mounts on top of the disposable microfluidic systems via thin neodymium magnets, after the soft microfluidic system has been applied to the wearer via a skin-compatible adhesive. This ensures the disposable part would be very efficient and cheap to manufacture, with no electronics on board.

The 1.5mm thick and 32mm diameter flexible patch was designed to monitor the concentration of chloride, lactate, and glucose, simultaneously with pH, sweat rate, and total sweat loss.

It provides visual readout that can be analysed via a smartphone app collecting digital images for the colorimetric quantification of chloride, pH, and sweat rate/loss. Data from the biofuel cell–based lactate and glucose sensors is read-out wirelessly via NFC, using the smartphone as a reader.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.